
Acoustic Instrument
Message Specification

v 0.4 Proposal
June 15, 2014

Keith McMillen Instruments
BEAM Foundation

Created by:
Keith McMillen - keith@beamfoundation.org

With contributions from :
Barry Threw - barry@beamfoundation.org &

Chris Shaver - hexxiiiz@gmail.com

mailto:keith@beamfoundation.org
mailto:keith@beamfoundation.org
mailto:barry@beamfoundation.org
mailto:barry@beamfoundation.org

Last Modified by Keith McMillen June 15, 2014

1.0 The Problem
1.1 Acoustic MetaData is Useful

The audio signal from an acoustic instrument is rich in information. Pitch, rhythmic and
timbral data extracted from such a signal is useful in controlling rich synthesis intimately
tied to an acoustic instrument. When designing such synthesizers it is desirable to have
such information be high speed, continuous and coherent.

1.2 Limitations of Current Control Protocols
(Taken from ZIPI :Origins and Motivations MIT Press, Computer Music Journal, Winter
1994)

The success of alternate controllers has been less than overwhelming in the
history of electronic music. The predominant controller for electronic music
synthesizers has been the piano or organ keyboard. Beside the widespread
availability of pianos and organs and the people who play them, the very
nature of the keyboard makes it an ideal choice from an implementor's point
of view.

Keyboard-style instruments decouple the player from the sound generating
element. The strike of a finger on a key starts a chain of events that
produces a sound. After a key is struck the greatest creative choice left to
the musician is when to release it. This series of key closures and releases
is the simplest form of information that can be used to control a
synthesizer.

The early commercially available synthesizers (Moog's MiniMoog, the ARP
Odyssey, or the EMS Putney VCS-3) were monophonic and non-dynamic. As the
technology evolved, instruments became polyphonic and capable of wide
dynamic response (e.g., the Yamaha DX-7). The control information fed to the
synthesis engine grew to include how fast the key was struck (the MIDI key
velocity). Joysticks, modulation wheels, after-touch, and foot-pedals added
the continuous element to keyboard control.

Historically, this is not unfamiliar to keyboard players. Pipe organs are
non-dynamic but volume can be controlled by foot pedal. In many ways the
connection of keyboards to synthesizers resulted in very little loss of
familiarity of control with a large gain in timbral choice.

For musicians trained on other instruments, the option of synthesis has not
been attractive. Woodwinds, bowed strings, and brass instruments all place
the player in direct physical contact with the vibrating element---reeds,
strings, or columns of air. Instead of limited control of dozens of notes
these instruments offer subtle and intimate control over one or a few notes.
Whether to "trade in" this control for a wider tonal palette is a difficult
decision.

MIDI and Keyboards
==================

MIDI has been serving our interface needs for over a decade. Although many
have criticized MIDI (Loy 1985; Moore 1988; Scholz 1991), no one has done
much about its obvious problems. Alternate controllers have not been a major
factor in the business of electronic music, and therefore have not been well
accommodated by the industry. They represent a challenging problem both
technically and economically. The persistence of an interface standard that
makes the necessary extensions for nuance and control difficult if not
impossible has not helped.

The connection of keyboards to sample playback sound modules is well served
by MIDI. Even the speed of MIDI (31.25 kBaud) is adequate for transmitting
data using the event-based nature of a keyboard. A ten-note chord can be
sent in 6.7 msec, a delay which is on the borderline of being imperceptible.
The continuous controller information generated from a keyboard usually has
no more than three parameters (pitch bend, modulation, and after-touch),
keeping the bit count low.

Problems occur, however, when trying to connect alternate controllers to
synthesizers (Muir and McMillen 1986). Polyphonic instruments such as guitar
and violin can easily "flood" a MIDI channel with data. For example, simply
updating 7-bit pitch bend and volume 100 times a second for six guitar
strings exceeds MIDI's bandwidth:

6 strings * (3 pitch bytes + 3 volume bytes) * 10 bits / 0.01 sec = 36.0 kBaud

(MIDI takes 10 bits to transmit a 7 bit value).

Independent of bandwidth, MIDI also represents data in a manner that assumes
the controller is a keyboard or at least a percussive device. The MIDI
"note-on" command is an indivisible integration of timing, pitch, and
loudness (velocity) information. This is completely appropriate for a
keyboard; every time a key is struck the information for pitch, velocity,
and the timing of the "note" is known simultaneously and is sent out over
MIDI. Every modification of one of these three values is accompanied by a
change, or at least a reassertion, of the other two.

For an instrument of continuous nature, such as a violin, these parameters

are often decoupled. One hand generally determines timing and loudness and
the other decides pitch. They can and do change independently of each other.
Furthermore, the timing of a note is not as simple as the pressing of a
button. Notes can come into audibility gradually as in a crescendo. MIDI
requires that an on/off decision be made at some volume threshold. When this
threshold is met, the velocity value sent in a MIDI command will usually be
the value of this threshold, making the velocity data useless.

MIDI does provide some facility for continuous volume change (controller
#7), and for pitch change without articulation. Some synthesizers respond to
legato-style commands. Pitch bend can vary pitch up and down up to one
octave but with a resolution of only 5.1 divisions per semitone (19.6 cents).

Breaking the Chain
==================

The loudest complaint about alternate controllers that extract information
from traditional instruments is the time delay between the performer's
gesture and the audible response from the synthesizer. However, the Zeta
Mirror 6 guitar, using a combination of switched frets and pitch analysis,
restricted latencies to less than 6 msec over most of its range. With the
delay issues removed, continuous amplitude control became the next, most
obvious, requirement. The technique previously described of controlling the
audio in the post-MIDI analog domain met this need.

Amplitude control is essential but not sufficient; many instrumentalists can
change the timbre of a note as it evolves over time. The mapping of timbral
information extracted from the instrument onto the synthetic voice or voices
is the next step for returning control to the performer. This too could be
handled in the post-MIDI audio path, but the requirement for greater
flexibility and more elaborate processing of control information is best
solved in the digital domain. The need for a new music description language,
and the means to transport this information in a high speed deterministic
network, became clear to us.

The first concepts for what was to become the ZIPI musical data language
started in the fall of 1989, coinciding with the start of intense
collaboration of Zeta Music and the Center for New Music and Audio
Technology (CNMAT) at the University of California, Berkeley. In order to
successfully improve the keyboard-MIDI-sampler path, replacements were
needed for all three of the elements in the chain. Since that date, research
has focused on the Infinity Box (a gesture-guided pitch and timbre to ZIPI
converter), the ZIPI network and its specification, and Frisco (an additive
resynthesis engine with a control structure that will respond to ZIPI MPDL
commands).

2.0 The Acoustic Instrument Message
The Acoustic Instrument Message is a simple data structure and specification for
sending spectral information derived from an acoustic signal to analysis or synthesis
applications. It is structured as a single 128-bit “frame” of information consisting of a
voice number, articulation information, MIDI 1.0 compatibility fields, and seven spectral
descriptors representing the state of the acoustic signal.

While this data frame is transport and protocol agnostic as long as the requirements for
high transmission speed and coherence are met, it is recommended that the data be
packaged with the Open Sound Control content format and sent over UDP.

The frame format and a description of its contents are described in the remainder of
section 2, and the transport recommendations in section 3.

2.1 Structure Format

The AIM Packet is a 128-bit payload, and is generally divided into full bytes, with some
exceptions. While many parameters are only a single byte some require greater
resolution and are split between two bytes.

2.2 Voice

Currently the AIM frame specifies the four least significant bits of the first byte to be
used for voice number, allowing for a total of 16 voices. With AIMʼs origins in
representing the signals from stringed instruments, this number was felt sufficient to
address most common acoustic instruments.

The four most significant bits of the frame are left reserved for another level of
addressing hierarchy, most likely an “instrument group” number.

Parameter Group Bytes Bits Description Range

Key Frame / Voice 1
1 Bit Key Frame 0 - 1

Key Frame / Voice 1
7 Bits Voice Number 0 - 15

Articulation 1

6 Bits Reserved

Articulation 1 1 Bit Trigger Flag 0 - 1Articulation 1
1 Bit Amplitude Gate Flag 0 - 1

Articulation 1

1 Bit Null 0

Triggered Pitch 1
7 Bits MIDI 1.0 Compatible Note Number 0 - 127

Triggered Pitch 1
1 Bit Null 0

Triggered Amplitude 1
7 Bits MIDI 1.0 Velocity 0 - 127

Triggered Amplitude 1
1 Bit Null 0

Pitch Bend 2

7 Bits MIDI 1.0 Pitch Bend MSB 0 - 127

Parameter Group Bytes Bits Description Range

Pitch Bend 2 1 Bit Null 0Pitch Bend 2
7 Bits MIDI 1.0 Pitch Bend LSB 0 - 127

Pitch Bend 2

1 Bit Null 0

Continuous Pitch 2
1 Byte Semitone 0 - 255

Continuous Pitch 2
1 Byte Fractional 0 - 255

Continuous Amplitude 1 1 Byte dB in 0.5dB increments 0 - 255 (0 - 127dB)

Centroid 2
1 Byte Semitone 0 - 255

Centroid 2
1 Byte Fractional 0 - 255

Even / Odd Harmonic 1 1 Byte 1 = Odd, 255 = Even 1 - 255

Noise Amount 1 1 Byte dB in 0.5dB increments 0 - 255 (0 - 127dB)

Noise Centroid 2
1 Byte Semitone 0 - 255

Noise Centroid 2
1 Byte Fractional 0 - 255

Inharmonicity 1 1 Byte
1 = 126% Squeezed, 127 = None, 255 =

126% Stretched
1 - 255

2.3 Articulation

The first five most significant bits of the second byte of the AIM frame are reserved for
future articulation designations.

The next three bits are defined as three flags representing three types of onset events
that affect how the packet will be interpreted by the receiver.

2.3.1 Trigger Flag

1 Bit

The Trigger Flag is set high whenever a transient event occurs in the acoustic signal.
This could be due to a change in bow direction, pluck, sudden note onset from a wind
instrument or any kind of transient event or impulse that should be interpreted as a
discrete sonic event.

2.3.2 Gate Flag

1 Bit

The Gate Flag is set high when there is sufficient audio amplitude in the acoustic signal.
While what constitutes “sufficient audio amplitude” is not specified, the flag is meant to
be a clear demarkation for note on and off for the synthesizer.

2.3.3 Key Frame Flag

1 Bit

The Key Frame Flag distinguishes between two different types of AIM Frames,
continuous frames and key frames. The Key Frame Flag is set high on a key frame, and
low on a continuous frame.

AIM Continuous Frames are sent on every spectral update of the acoustic signal. Ideally
they should be sent for every analysis frame taken of the signal. While the rate may be
slowed to accommodate available processor cycles or network bandwidth, they should
be ideally be regular and low jitter in order to accurately represent the spectral state of
the signal over time.

AIM Key Frames are sent upon a change in any of the articulation bits of the frame.
They are asynchronous to the continuous frames and thus may occur outside of the
continuous frame rate. However, key frames contain all the spectral information
available when the key frame was triggered.

2.4 MIDI 1.0 Compatibility

The next four bytes are dedicated toward maintaining simple MIDI 1.0 compatibility with
preexisting receivers.

2.4.1 Triggered Pitch

1 Byte

Triggered Pitch is a MIDI 1.0 compatible semitone value, from 0 to 127. The most
significant bit is set to 0.

Note that this value should be identical to the value of the first byte of the next non-zero
Continuous Pitch spectral descriptor following a frame with the Trigger Flag set high.

2.4.2 Triggered Amplitude

1 Byte

Triggered Amplitude is a MIDI 1.0 compatible velocity value, from 0 to 127. The most
significant bit is set to 0.

2.4.3 Pitch Bend

2 Bytes

Pitch Bend is output as a a dual precision, 14-bit, standard MIDI value. The most
significant bits of both bytes are set to 0.

2.5 Spectral Descriptors

2.5.1 Continuous Pitch

2 Bytes

Continuous Pitch represents the current fundamental pitch of the acoustic signal. It
consists of two bytes. The first byte represents the current semitone value, with the MIDI
standard 60 equal to C3.

The second byte represents a fractional part of the semitone, with 256 divisions per
semitone. This gives a resolution of down to ~0.39 cents as the smallest representable
pitch change.

When a fundamental pitch is undetermined, the continuous pitch value should be set to
0.

2.5.2 Continuous Amplitude

1 Byte

Continuous Amplitude represents the current volume of acoustic signal. It is represented
in dB, in half dB increments. Therefore to find the current level of the signal in dB you
must multiply this value by 0.5. This gives a total representable dynamic range of 127
dB.

2.5.3 Centroid

2 Bytes

Centroid represents the "center of mass" of the spectrum. Perceptually, it has a robust
connection with the impression of "brightness" of a sound. It is calculated as the
weighted mean of the frequencies present in the signal, with their magnitudes as the
weights.

It consists of two bytes. The first byte represents the current semitone value, with the
MIDI standard 60 equal to C3 or ~261.62 Hz.

The second byte represents a fractional part of the semitone, with 256 divisions per
semitone. This gives a resolution of down to ~0.39 cents as the smallest representable
pitch change.

2.5.4 Even/Odd Harmonic Balance

1 Byte

The Even/Odd Harmonic Balance is the ratio of odd harmonic energy to even harmonic
energy in a signal. This allows the disambiguation between sounds with predominantly
odd harmonics, such as clarinets, and sounds with predominantly even harmonics, such
as trumpets.

A signal with completely odd harmonics is represented as 1, with 50% even/odd
balance as 127, and completely even harmonics as 255.

2.5.5 Noise Amount

1 Byte

Noise Amount is the ratio of the energy of the non-harmonic part of a signal to the total
energy. It is close to 0 for a purely harmonic signal and close to 255 for a purely noisy
signal.

2.5.6 Noise Centroid

2 Bytes

Noise Centroid represents the "center of mass" of the spectrum of the non-harmonic
part of the signal. Perceptually, it has a robust connection with the impression of
"brightness" of a sound. It is calculated as the weighted mean of the frequencies
present in the non-harmonic part of the signal, with their magnitudes as the weights.

It consists of two bytes. The first byte represents the current semitone value, with the
MIDI standard 60 equal to C3 or ~261.62 Hz.

The second byte represents a fractional part of the semitone, with 256 divisions per
semitone. This gives a resolution of down to ~0.39 cents as the smallest representable
pitch change.

2.5.7 Inharmonicity

1 Byte

Inharmonicity represents the divergence of the signalʼs spectral components from a
purely harmonic signal. It is computed as an energy weighted divergence of the spectral
components from the multiple of the fundamental frequency.

A signal with a 126% squeezed spectra is represented with a 1, a balanced spectra as a
127, and a 126% stretched spectra with a 255.

2.6 Parameter Timing

While each AIM frame (whether it is a continuous or a key frame) contains the full set of
articulation and spectral information, the differing latency of various analysis methods
means that data will not be available concurrently. The AIM frame should not be delayed
to wait for a complete data set, but rather should be sent when any data is available.

In general, when a note starts the first parameter to be recognized will be the amplitude
gate, followed by a trigger, followed by volume information, followed by pitch and
spectral information. As an AIM key frame is triggered by both the amplitude gate and a
trigger, those frames will most likely contain indeterminate or best guess spectral
information. To start a note on a synthesizer with the least apparent latency a non-
pitched or indeterminately pitched sound should be played upon the rising of an
amplitude gate and then be updated with correct pitch, loudness and spectral
information when it becomes available.

3.0 Recommendations

3.1 Open Sound Control

3.1.1 OSC Messages

3.1.2 OSC Bundles

3.1.2 OSC Time Tags

OSC Messages

An OSC message consists of an OSC Address Pattern followed by an OSC Type Tag String
followed by zero or more OSC Arguments.

Note: some older implementations of OSC may omit the OSC Type Tag string. Until all such
implementations are updated, OSC implementations should be robust in the case of a missing
OSC Type Tag String.

OSC Address Patterns

An OSC Address Pattern is an OSC-string beginning with the character '/' (forward slash).

OSC Type Tag String

An OSC Type Tag String is an OSC-string beginning with the character ',' (comma) followed by
a sequence of characters corresponding exactly to the sequence of OSC Arguments in the given
message. Each character after the comma is called an OSC Type Tag and represents the type of
the corresponding OSC Argument. (The requirement for OSC Type Tag Strings to start with a
comma makes it easier for the recipient of an OSC Message to determine whether that OSC
Message is lacking an OSC Type Tag String.)

This table lists the correspondance between each OSC Type Tag and the type of its
corresponding OSC Argument:

OSC Bundles

An OSC Bundle consists of the OSC-string "#bundle" followed by an OSC Time Tag, followed
by zero or more OSC Bundle Elements. The OSC-timetag is a 64-bit fixed point time tag whose
semantics are described below.

An OSC Bundle Element consists of its size and its contents. The size is an int32 representing the
number of 8-bit bytes in the contents, and will always be a multiple of 4. The contents are either
an OSC Message or an OSC Bundle.

Note this recursive definition: bundle may contain bundles.

This table shows the parts of a two-or-more-element OSC Bundle and the size (in 8-bit bytes) of
each part.

Parts of an OSC Bundle
Data
Size
Purpose
OSC-string "#bundle"
8 bytes
How to know that this data is a bundle
OSC-timetag
8 bytes
Time tag that applies to the entire bundle
Size of first bundle element
int32 = 4 bytes
First bundle element
First bundle element's contents
As many bytes as given by "size of first bundle element"
Size of second bundle element
int32 = 4 bytes

http://opensoundcontrol.org/node/3/#timetags
http://opensoundcontrol.org/node/3/#timetags

Second bundle element
Second bundle element's contents
As many bytes as given by "size of second bundle element"
etc.

Addtional bundle elements

Temporal Semantics and OSC Time Tags

An OSC server must have access to a representation of the correct current absolute time. OSC
does not provide any mechanism for clock synchronization.

When a received OSC Packet contains only a single OSC Message, the OSC Server should
invoke the correponding OSC Methods immediately, i.e., as soon as possible after receipt of the
packet. Otherwise a received OSC Packet contains an OSC Bundle, in which case the OSC
Bundle's OSC Time Tag determines when the OSC Bundle's OSC Messages' corresponding OSC
Methods should be invoked. If the time represented by the OSC Time Tag is before or equal to
the current time, the OSC Server should invoke the methods immediately (unless the user has
configured the OSC Server to discard messages that arrive too late). Otherwise the OSC Time
Tag represents a time in the future, and the OSC server must store the OSC Bundle until the
specified time and then invoke the appropriate OSC Methods.

Time tags are represented by a 64 bit fixed point number. The first 32 bits specify the number of
seconds since midnight on January 1, 1900, and the last 32 bits specify fractional parts of a
second to a precision of about 200 picoseconds. This is the representation used by Internet NTP
timestamps.The time tag value consisting of 63 zero bits followed by a one in the least
signifigant bit is a special case meaning "immediately."

OSC Messages in the same OSC Bundle are atomic; their corresponding OSC Methods should
be invoked in immediate succession as if no other processing took place between the OSC
Method invocations.

When an OSC Address Pattern is dispatched to multiple OSC Methods, the order in which the
matching OSC Methods are invoked is unspecified. When an OSC Bundle contains multiple
OSC Messages, the sets of OSC Methods corresponding to the OSC Messages must be invoked
in the same order as the OSC Messages appear in the packet. (example)

When bundles contain other bundles, the OSC Time Tag of the enclosed bundle must be greater
than or equal to the OSC Time Tag of the enclosing bundle. The atomicity requirement for OSC
Messages in the same OSC Bundle does not apply to OSC Bundles within an OSC Bundle.

3.2 Transport

3.3 Zeroconf Networking

http://opensoundcontrol.org/spec-1_0-examples.html#bundledispatchorder
http://opensoundcontrol.org/spec-1_0-examples.html#bundledispatchorder

